Thermostats are Barney basic in function, touch the red to the hot to call heat, red to yellow for cool, and red to green for the fan, then open the circuit when the temp is where you want it. Kinda sounds like a fun project.
It’s actually surprising that we expect so much from a smart thermostat. Wouldn’t it be far smarter to sell a dumb thermostat on a local iot network and put the smarts in your automation hub? People who want the extra functionality would be good with that and people who don’t would appreciate saving the money
I could see that, but you have to remember that the average consumer doesn’t have an automation hub or get deep into the automation sphere, and as such many of these products are designed to be standalone devices that can be controlled from a phone. Often enough they can be the only ‘smart’ device in a home.
That all said, a dumb thermostat like your suggesting would still require a small CPU, ram, embedded OS, and network stack/hardware to operate and communicate, so I don’t know how far the savings would go. I can’t imagine the processing power on something like a nest is that powerful as it is.
I’m sure not much: Amazon is not likely taking a loss on all those $50 Echo Dots, but that’s a lot more than a thermostat needs. It’s also on WiFi and can play streaming audio, so that’s not nothing
Yes, the C/blue wire is common, basically a neutral for the 24v system and necessary for more digital thermostats to keep the thermostat powered (some can work without the c wire, but it depends on the unit feeding power). The old mechanical ones work on the tilting mercury thing or copper coil for temp sensing, and only require the red wire to touch their respective wires to call whatever function, but the digital ones do the same thing on a switching level. I know there are additional wire sometimes for multistage heat and zoning, but as far as I know it’s the same principle. I’ll be honest I’m an electrician by trade and not an HVAC guy, and I know some of the more intricate systems can deviate from this, but your average residential system should be similar or damn near the same as my original comment (granted my experience is in Southern CA, so there are possibly regional differences with oil furnaces, radiator systems, etc).
I had no idea it was that simple! How do you control heat pumps? I know they have a setting where if outside is too cold it runs backup electric or gas.
Heat pumps are not simple at all. They are extremely efficient but can’t produce a large temperature gradient so they need to run very long cycles (potentially remaining on 24 hours straight). Modern cold weather air source heat pumps also tend to have variable output (variable speed compressor, variable speed fan). This demands a more complicated thermostat that adjusts the heat pump up and down, possibly with PWM.
And then there’s the emergency/auxiliary heating from the furnace. The thermostat needs to have some intelligent logic to decide when the heating demand exceeds the capacity of the heat pump and call for the furnace.
Heat pumps are an entirely different story, and I don’t have too much experience with them, most of the splits I’ve seen come with their own remote controls. I was talking on more traditional wall heaters, central air/furnace/forced air, etc.
If its a cheap crappy one, the compressor is on/off depending on temperature. Decent ones will have a VFD to manage the load of the compressor so it doesn’t have to turn on/off all the time but just regulates the compressor load to match heating/cooling requirement. Both have their own controls, and you generally shouldn’t mess with them.
Thermostats are Barney basic in function, touch the red to the hot to call heat, red to yellow for cool, and red to green for the fan, then open the circuit when the temp is where you want it. Kinda sounds like a fun project.
It’s actually surprising that we expect so much from a smart thermostat. Wouldn’t it be far smarter to sell a dumb thermostat on a local iot network and put the smarts in your automation hub? People who want the extra functionality would be good with that and people who don’t would appreciate saving the money
I could see that, but you have to remember that the average consumer doesn’t have an automation hub or get deep into the automation sphere, and as such many of these products are designed to be standalone devices that can be controlled from a phone. Often enough they can be the only ‘smart’ device in a home.
That all said, a dumb thermostat like your suggesting would still require a small CPU, ram, embedded OS, and network stack/hardware to operate and communicate, so I don’t know how far the savings would go. I can’t imagine the processing power on something like a nest is that powerful as it is.
My Ecobee not only has some fairly sophisticated software, a touch screen, and remote sensors, but enough CPU to run Alexa
I’d be curious to see what system resources are required for Alexa
I’m sure not much: Amazon is not likely taking a loss on all those $50 Echo Dots, but that’s a lot more than a thermostat needs. It’s also on WiFi and can play streaming audio, so that’s not nothing
Is that the same for the ones with the C wire or any of the other crazy wires?
Yes, the C/blue wire is common, basically a neutral for the 24v system and necessary for more digital thermostats to keep the thermostat powered (some can work without the c wire, but it depends on the unit feeding power). The old mechanical ones work on the tilting mercury thing or copper coil for temp sensing, and only require the red wire to touch their respective wires to call whatever function, but the digital ones do the same thing on a switching level. I know there are additional wire sometimes for multistage heat and zoning, but as far as I know it’s the same principle. I’ll be honest I’m an electrician by trade and not an HVAC guy, and I know some of the more intricate systems can deviate from this, but your average residential system should be similar or damn near the same as my original comment (granted my experience is in Southern CA, so there are possibly regional differences with oil furnaces, radiator systems, etc).
I had no idea it was that simple! How do you control heat pumps? I know they have a setting where if outside is too cold it runs backup electric or gas.
Heat pumps are not simple at all. They are extremely efficient but can’t produce a large temperature gradient so they need to run very long cycles (potentially remaining on 24 hours straight). Modern cold weather air source heat pumps also tend to have variable output (variable speed compressor, variable speed fan). This demands a more complicated thermostat that adjusts the heat pump up and down, possibly with PWM.
And then there’s the emergency/auxiliary heating from the furnace. The thermostat needs to have some intelligent logic to decide when the heating demand exceeds the capacity of the heat pump and call for the furnace.
Heat pumps are an entirely different story, and I don’t have too much experience with them, most of the splits I’ve seen come with their own remote controls. I was talking on more traditional wall heaters, central air/furnace/forced air, etc.
If its a cheap crappy one, the compressor is on/off depending on temperature. Decent ones will have a VFD to manage the load of the compressor so it doesn’t have to turn on/off all the time but just regulates the compressor load to match heating/cooling requirement. Both have their own controls, and you generally shouldn’t mess with them.
They have their own microcontrollers usually to manage that stuff, including defrosting